Control of underactuated systems – from theory to practice *

KRZYSZTOF KOZŁOWSKI

Institute of Automation and Robotics

Faculty of Control, Robotics and Electrical Engineering
Poznan University of Technology
Poland

krzysztof.kozlowski@put.poznan.pl

5.11.2020
1. Mathematical Properties of the Model

2. Robot Model

3. Largest feedback linearizable subsystem

4. Stabilization problem

5. Simulation Results
Overview

1. Mathematical Properties of the Model
2. Robot Model
3. Largest feedback linearizable subsystem
4. Stabilization problem
5. Simulation Results
Mathematical Properties of the Model

Consider the system with multiple inputs with dynamics given by:

\[
\dot{x} = f(x) + G(x)u,
\]

(1)

where

\[
\begin{align*}
 f(x) &= \begin{bmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{bmatrix}, \\
 G(x) &= \begin{bmatrix} g_{11}(x) & \cdots & g_{1m}(x) \\ \vdots & \ddots & \vdots \\ g_{n1}(x) & \cdots & g_{nm}(x) \end{bmatrix} = \begin{bmatrix} g_1(x) & \cdots & g_m(x) \end{bmatrix}.
\end{align*}
\]

(2)

where \(x \in \mathbb{R}^n \), \(u \in \mathbb{R}^m \) and \(f(x), G(x) \) are of appropriate dimensions.

We can define the distributions

\[
D_j = \text{span}\{g_1, \ldots, g_m, \text{ad}_f g_1, \ldots, \text{ad}_f g_m, \ldots, \text{ad}_f^{j-1} g_1, \ldots, \text{ad}_f^{j-1} g_m\}
\]

where:

\[
\text{ad}_f g_i = [f, g_i] = \frac{\partial g_i}{\partial x} f - \frac{\partial f}{\partial x} g_i, \text{ for any } k \geq 1, \text{ setting } \text{ad}_f^0 g_i(x) = g_i(x),
\]

and let \(\bar{D}_j \) denote the involutive closure of \(D_j \), which is the smallest involutive distribution containing \(D_j \) and \(j = 0, 1, \ldots, n - 1 \).

* Distribution \(D \) in involutive if the Lie Bracket \([f_i(x), f_j(x)]\) for any pair of vector fields \(f_i(x), f_j(x) \) belonging to \(D \) is a vector field which belongs to \(D \).
Mathematical Properties of the Model

Aim

1. analyze properties of underactuated 3 DOF pendulum
2. stabilize it in vertical position

- When the system is underactuated, full feedback linearisation is not possible.
- The system should be decomposed into two subsystems, one which is linear, and one which stays still nonlinear.
- An important issue is the maximal dimension of the linear subsystem that might be obtained.
Overview

1. Mathematical Properties of the Model
2. Robot Model
3. Largest feedback linearizable subsystem
4. Stabilization problem
5. Simulation Results
Robot Model

3-link robot
- \(N = 3 \) rigid bodies coupled in a tree structure
- supported on ground via an actuated frictionless revolute joint
- one degree of underactuation (3 DOF with 2 independent actuators)

Table 1: Robot parameters

<table>
<thead>
<tr>
<th>(m_i) – Mass [kg]</th>
<th>Centre of mass [m]</th>
<th>(L_i) – Length [m]</th>
<th>Inertia [kg m(^2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.118</td>
<td>0.062</td>
<td>0.07</td>
<td>0.0118</td>
</tr>
<tr>
<td>1.593</td>
<td>0.074</td>
<td>0.15</td>
<td>0.0119</td>
</tr>
<tr>
<td>0.405</td>
<td>0.134</td>
<td>0.295</td>
<td>0.0117</td>
</tr>
</tbody>
</table>
Robot Model

In order to establish the system dynamics one can define Lagrangian

\[L = K - V \]

while \(K = \frac{1}{2} \dot{q}^T M(q) \dot{q} \) denotes kinetic energy, with \(M \) being a positive definite inertia matrix, and \(V \) is the potential energy.

Next, taking into account the actuation on the system (Fig. 2) one obtains

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = \begin{cases}
\tau_k, & k = 1, 2 \\
0, & k = 3
\end{cases}
\]

(3)

with \(\tau_k \in \mathbb{R} \).

Figure 2: Triple pendulum – underactuated model
The overall model of dynamics can be written in a standard form of:

\[M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = \tau \]

(4)

where matrices \(M, C, G \) are as following:

\[M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}, \quad C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}, \quad G = \begin{bmatrix} G_1 \\ G_2 \\ G_3 \end{bmatrix}, \quad \tau = \begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix}, \]

(5)

or in equivalent form:

\[
\begin{align*}
m_{11}\ddot{q}_1 + m_{12}\ddot{q}_2 + m_{13}\ddot{q}_3 + \mu_1 + G_1 &= \tau_1 \\
m_{21}\ddot{q}_1 + m_{22}\ddot{q}_2 + m_{23}\ddot{q}_3 + \mu_2 + G_2 &= \tau_2 \\
m_{31}\ddot{q}_1 + m_{32}\ddot{q}_2 + m_{33}\ddot{q}_3 + \mu_3 + G_3 &= 0
\end{align*}
\]

(6)

where:

\[
\begin{align*}
\mu_1 &= c_{11}\dot{q}_1 + c_{12}\dot{q}_2 + c_{13}\dot{q}_3, \\
\mu_2 &= c_{21}\dot{q}_1 + c_{22}\dot{q}_2 + c_{23}\dot{q}_3, \\
\mu_3 &= c_{31}\dot{q}_1 + c_{32}\dot{q}_2 + c_{33}\dot{q}_3.
\end{align*}
\]
The elements of the M mass matrix are as follows:

\begin{align*}
 m_{11} &= a_1 + a_2 + a_3 + a_4 + a_5 + 2(r_1 + r_2 + r_3) \\
 m_{12} &= a_2 + a_3 + a_4 + r_1 + r_2 + 2r_3 \\
 m_{13} &= a_3 + r_1 + r_3 \\
 m_{21} &= m_{12} \\
 m_{22} &= a_2 + a_3 + a_4 + 2r_3 \\
 m_{23} &= a_3 + r_3 \\
 m_{31} &= m_{13} \\
 m_{32} &= m_{23} \\
 m_{33} &= a_3
\end{align*}

(7)

where

\begin{align*}
 a_1 &= m_1 L_{c_1}^2 + I_1 \\
 a_2 &= m_2 L_{c_2}^2 + I_2 \\
 a_3 &= m_3 L_{c_3}^2 + I_3 \\
 a_4 &= m_3 L_2^2 \\
 a_5 &= (m_2 + m_3)L_1^2 \\
 r_1 &= L_1 L_{c_3} m_3 \cos(q_2 + q_3) \\
 r_2 &= L_1 (L_2 m_3 + L_{c_2} m_2) \cos q_2 \\
 r_3 &= L_2 L_{c_3} m_3 \cos q_3.
\end{align*}

(8)
Matrix C and G

The Coriolis matrix C is:

\[
\begin{align*}
 c_{11} &= -d_1 \dot{q}_2 - d_2 \dot{q}_3 \\
 c_{12} &= -d_1(\dot{q}_1 + \dot{q}_2) - d_2 \dot{q}_3 \\
 c_{13} &= -d_2(\dot{q}_1 + \dot{q}_2 + \dot{q}_3) \\
 c_{21} &= d_1 \dot{q}_1 - d_3 \dot{q}_3 \\
 c_{22} &= -d_3 \dot{q}_3 \\
 c_{23} &= -d_3(\dot{q}_1 + \dot{q}_2 + \dot{q}_3) \\
 c_{31} &= d_2 \dot{q}_1 + d_3 \dot{q}_2 \\
 c_{32} &= d_3(\dot{q}_1 + \dot{q}_2) \\
 c_{33} &= 0
\end{align*}
\]

(9)

with

\[
\begin{align*}
 d_1 &= L_1 L_c m_3 \sin(q_2 + q_3) + (m_2 L_c + m_3 L_2) L_1 \sin q_2 \\
 d_2 &= L_1 L_c m_3 \sin(q_2 + q_3) + L_2 L_c m_3 \sin q_3 \\
 d_3 &= L_2 L_c m_3 \sin q_3.
\end{align*}
\]

(10)

The Gravity force matrix G is as follows:

\[
\begin{align*}
 G_1 &= g(b_1 + b_2 + b_3) \\
 G_2 &= g(b_2 + b_3) \\
 G_3 &= g b_3
\end{align*}
\]

(11)

where:

\[
\begin{align*}
 b_1 &= m_1 L_c \cos q_1 + (m_2 + m_3) L_1 \cos q_1 \\
 b_2 &= (m_2 L_c + m_3 L_2) \cos(q_1 + q_2) \\
 b_3 &= m_3 L_c \cos(q_1 + q_2 + q_3). \\
 g &= \text{gravitational acceleration}
\end{align*}
\]

(12)
Let’s recall the equations of motion in the following form

\[
\begin{bmatrix}
m_{11} & m_{12} & m_{13} \\
m_{12} & m_{22} & m_{23} \\
m_{13} & m_{23} & m_{33}
\end{bmatrix}
\begin{bmatrix}
\ddot{q}_1 \\
\ddot{q}_2 \\
\ddot{q}_3
\end{bmatrix}
+ \begin{bmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{bmatrix}
\begin{bmatrix}
\dot{q}_1 \\
\dot{q}_2 \\
\dot{q}_3
\end{bmatrix}
+ \begin{bmatrix}
G_1 \\
G_2 \\
G_3
\end{bmatrix}
= \begin{bmatrix}
\tau_1 \\
\tau_2 \\
0
\end{bmatrix}.
\]

(13)

and assume that \(C_1 = [c_{11}, c_{12}, c_{13}] \dot{q} \), \(C_2 = [c_{21}, c_{22}, c_{23}] \dot{q} \), \(C_3 = [c_{31}, c_{32}, c_{33}] \dot{q} \).

In the following step, we can linearize this dynamics with the use of collocated linearization

\[
\ddot{q}_3 = -\frac{m_{13}\ddot{q}_1 + m_{23}\ddot{q}_2 + C_3 + G_3}{m_{33}}
\]

Introduce linearizing controller:

\[
\tau_1 = \overline{m}_{11}v_1 + \overline{m}_{12}v_2 + \overline{C}_1 + \overline{G}_1
\]
\[
\tau_2 = \overline{m}_{21}v_1 + \overline{m}_{22}v_2 + \overline{C}_2 + \overline{G}_2
\]

(14)
Partial linearization conditions

where
\[
\begin{align*}
\bar{m}_{11} &= m_{11} + J_1 m_{31} & \bar{C}_1 &= C_1 + J_1 \mu_3 \\
\bar{m}_{12} &= m_{12} + J_1 m_{32} & \bar{C}_2 &= C_2 + J_2 \mu_3 \\
\bar{m}_{21} &= m_{21} + J_2 m_{31} & \bar{G}_1 &= G_1 + J_1 G_3 \\
\bar{m}_{22} &= m_{22} + J_2 m_{32} & \bar{G}_2 &= G_2 + J_2 G_3.
\end{align*}
\]

for \(J_1 = -\frac{m_{13}}{m_{33}} \), \(J_2 = -\frac{m_{23}}{m_{33}} \).

and \(v_1 \) i \(v_2 \) are additional control inputs, described later.

Calculations are valid when the system is not in its singularity, when:

1. \(\det \begin{bmatrix} \bar{m}_{11} & \bar{m}_{12} \\ \bar{m}_{21} & \bar{m}_{22} \end{bmatrix}^{-1} = \frac{m_{33}}{\det M} \neq 0 \),

Here \(m_{33} > 0 \) and \(\det M > 0 \) by definition.

2. \(J_1 \neq 0 \) and \(J_2 \neq 0 \), respectively, for two cases:
 - \(a_3 = m_3 L_3 (L_1 + L_2) \) for \(q_2 = 0, q_3 = \pi + 2k\pi \);
 \(a_3 < m_3 L_3 (L_1 + L_2) \) for solution of the following equation: \(a_3 = -r_1 - r_3 \).
 - \(a_3 = m_3 L_2 L_3 \) for \(q_3 = \pi + 2k\pi \);
 \(a_3 < m_3 L_2 L_3 \) for \(q_3 = -\arccos(\frac{a_3}{m_3 L_2 L_3}) \).
Partial linearization conditions

In Eq. (14) variables v_1 and v_2 are new control inputs. Thus, considered system can be written in the following form

$$
\ddot{q}_1 = v_1 \\
\ddot{q}_2 = v_2 \\
\ddot{q}_3 = -m_{33}^{-1} (m_{31}\ddot{q}_1 + m_{32}\ddot{q}_2 + C_3 + G_3)
$$

or alternatively, introducing the state vector as:

$$
x = [q_1, w_1, q_2, w_2, q_3, w_3]^\top
$$

and substituting $C_3 + G_3 = R_3 - J_1R_1 - J_2R_2$, the pendulum model is

$$
\dot{q}_1 = w_1 \\
\dot{w}_1 = v_1 \\
\dot{q}_2 = w_2 \\
\dot{w}_2 = v_2 \\
\dot{q}_3 = w_3 \\
\dot{w}_3 = R_3 + J_1(v_1 - R_1) + J_2(v_2 - R_2).
$$
Using more general form, the above equation (17) can be written as:

\[\dot{x} = f(x) + g(x)u \]

or

\[
\begin{bmatrix}
\dot{q}_1 \\
\dot{w}_1 \\
\dot{q}_2 \\
\dot{w}_2 \\
\dot{q}_3 \\
\dot{w}_3
\end{bmatrix} =
\begin{bmatrix}
w_1 \\
0 \\
w_2 \\
0 \\
w_3 \\
R_3 - J_1 R_1 - J_2 R_2
\end{bmatrix} +
\begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
0 \\
J_1
\end{bmatrix} v_1 +
\begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0 \\
J_2
\end{bmatrix} v_2. \tag{18}
\]

where: \(J_1(q_2, q_3) = -\frac{m_{13}(q_2, q_3)}{m_{33}} \), \(J_2(q_3) = -\frac{m_{23}(q_3)}{m_{33}} \) and \(R_i = M^{-1}(i)(-C(q, \dot{q}) \dot{q} - G) \), where \(M^{-1}(i) \) is an \(i \)-th row of the inverse of Mass matrix \(M \).
Overview

1. Mathematical Properties of the Model
2. Robot Model
3. Largest feedback linearizable subsystem
4. Stabilization problem
5. Simulation Results
As mentioned before, underactuated systems are not fully linearizable. The question arises – what is the largest feedback linearizable subsystem of the whole system?

In order to find the largest linearizable subsystem we propose to analyze the following distributions:

- \(D_0 = \text{span}\{g_1, g_2\} \) – obviously is involutive
- \(D_1 = \text{span}\{g_1, g_2, [f, g_1], [f, g_2]\} \) – not involutive

One needs to find smallest involutive closure of \(D_1 \):

- \(\overline{D}_1 = \text{span}\{g_1, g_2, [f, g_1], [f, g_2], [g_1, ad_f g_1]\} \) – not involutive
- \(\overline{D}_1 = \text{span}\{g_1, g_2, [f, g_1], [f, g_2], [g_2, ad_f g_2]\} \) – not involutive
- other combinations – not involutive
- \(\overline{D}_1 = \text{span}\{g_1, g_2, [f, g_1], [f, g_2], [g_1, ad_f g_2], [ad_f g_1, ad_f g_2]\} \) – involutive
Largest feedback linearizable subsystem

Frobenius Theorem

A nosingular distribution is completely integrable if and only if is involutive.

Then one needs to find an output function h that anihilates \overline{D}_1, i.e.

$$\begin{bmatrix}
\frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} & \frac{\partial h}{\partial x_3} & \frac{\partial h}{\partial x_4} & \frac{\partial h}{\partial x_5} & \frac{\partial h}{\partial x_6}
\end{bmatrix}
\begin{bmatrix}
g_1 & g_2 & [f, g_1] & [f, g_2] & [g_1, ad_f g_1] & [ad_f g_1, ad_f g_2]
\end{bmatrix} = 0$$

As a result we get:

$$\begin{align*}
\frac{\partial h}{\partial w_1} &= 0, \\
\frac{\partial h}{\partial w_2} &= 0, \\
\frac{\partial h}{\partial q_1} &= 0, \\
\frac{\partial h}{\partial q_2} &= 0, \\
\frac{\partial h}{\partial w_3} &= 0, \\
\frac{\partial h}{\partial q_3} &= 0.
\end{align*}$$

(19)

It is trivial that the only solution of Eq (19) is $h = \text{constant}$ because \overline{D}_1 is of full rank 6.

As a conclusion – the largest feedback linearizable subsystem is of dimension 4.
The Lie brackets used in the above calculations are as follows:

\[
\begin{align*}
[f, g_1] &= \begin{bmatrix} -1 & 0 & 0 & 0 \end{bmatrix}^\top - J_1 F_{16}^\top \\
[f, g_2] &= \begin{bmatrix} 0 & 0 & -1 & 0 \end{bmatrix}^\top - J_2 F_{26}^\top \\
[g_1, ad_f g_1] &= \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^\top F_{56}^\top \\
[g_1, ad_f g_2] &= \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^\top F_{66}^\top \\
[g_2, ad_f g_1] &= \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^\top F_{76}^\top \\
[g_2, ad_f g_2] &= \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^\top F_{86}^\top \\
[ad_f g_1, ad_f g_2] &= \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^\top (F_{95} F_{96})^\top ,
\end{align*}
\]

where:

\[
\begin{align*}
g_1 &= \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}^\top J_1 \\
g_2 &= \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}^\top J_2 \\
F_{16} &= \frac{1}{L_3^3} (L_1 \sin(q_2 + q_3) [2 w_1 + w_2 + w_3] + L_2 \sin(q_3) [2 w_1 + 2 w_2 + w_3]) \\
F_{26} &= \frac{1}{L_3^3} (L_2 \sin(q_3) (2 w_1 + 2 w_2 + w_3)) \\
F_{56} &= -\frac{1}{L_3^2} ((\sin(2q_2 + 2q_3)L_1^2 + 2 \sin(q_2 + 2q_3) L_1 L_2 + \sin(2q_3)L_2^2)) \\
F_{66} &= -\frac{1}{L_3^2} (L_1 L_2 \sin(q_2 + 2q_3) + L_2^2 \sin(2q_3)) \\
F_{76} &= -\frac{1}{L_3^2} (L_1 L_2 \sin(q_2 + 2q_3) + L_2^2 \sin(2q_3)) \\
F_{86} &= -\frac{1}{L_3^2} L_2^2 \sin(2q_3) \\
F_{95} &= \frac{1}{L_3^2} L_1 L_2 \sin(q_2) \\
F_{96} &= \frac{1}{L_3^2} L_1 L_2 w_2 \cos(q_2 + 2q_3)
\end{align*}
\]
Overview

1. Mathematical Properties of the Model
2. Robot Model
3. Largest feedback linearizable subsystem
4. Stabilization problem
5. Simulation Results
Aim

examine an implementation of a hybrid controller to stabilize a triple pendulum around its top unstable position, taking into account the limitations and constraints resulting from practical conditions (existing robot)

Stabilization will be obtained with the two commonly known approaches

- first – which utilizes the collocated methods for linearization
- second – the additional LQR controller is used to stabilize the system near the equilibrium point.
Stabilizing controller

\[u = \begin{cases}
 u_h & \text{for swing,} \\
 u_{Lin} & \text{for stabilization.}
\end{cases} \tag{21} \]

\(u_h \) — is used to bring the pendulum near the equilibrium pose,

\[u_h = [\tau_1, \tau_2]^\top \tag{22} \]

\(u_{Lin} \) — to stabilize at equilibrium

\[u_{Lin} = -K(x_r - x). \tag{23} \]

\[x_r = [q^d_1, q^d_2, q^d_3, \dot{q}^d_1, \dot{q}^d_2, \dot{q}^d_3]^\top \] and \(K = \begin{bmatrix} k_1 & k_2 & k_3 & k_4 & k_5 & k_6 \\
 k_7 & k_8 & k_9 & k_{10} & k_{11} & k_{12} \end{bmatrix} \), stand for the reference state and the controller gains, respectively.

\(\tau_1, \tau_2 \) are given by Eq. (14) and

\[
\begin{align*}
v_1 &= \ddot{q}_1 = \ddot{q}^d_1 + K_1^D (\dot{q}^d_1 - \dot{q}_1) + K_1^P (q^d_1 - q_1) \\
v_2 &= \ddot{q}_2 = \ddot{q}^d_2 + K_2^D (\dot{q}^d_2 - \dot{q}_2) + K_2^P (q^d_2 - q_2)
\end{align*} \tag{24} \tag{25}
\]

where \(K_1^D, K_1^P, K_2^D \) i \(K_2^P \) are positive gains, and \(q^d_1, q^d_2, q^d_3, \dot{q}^d_1, \dot{q}^d_2, \dot{q}^d_3 \) denote desired values at the equilibrium point.
Zero Dynamics

The zero dynamics was obtained assuming that $h = \text{const}$ and

$$q_1^d = \frac{\pi}{2}, \quad q_2^d = 0, \quad \dot{q}_1^d = 0, \quad \dot{q}_2^d = 0, \quad \ddot{q}_1^d = 0, \quad \ddot{q}_2^d = 0.$$

The resulting zero dynamics is calculated as follows

$$\ddot{q}_3 = \xi \sin q_3$$ \hspace{1cm} (26)

where: $\xi = \frac{1}{a_3}gm_3L_3$, and partial solution of Eq. (26) is given by Eq. (27), for some constant e_1:

$$\dot{q}_3 = -\sqrt{2\xi} \cos q_3 + e_1$$ \hspace{1cm} (27)

Zero dynamics phase portrait (Fig. 3) was obtained numerically, is locally stable and formed by closed curves.

Figure 3: Zero dynamics
Overview

1. Mathematical Properties of the Model
2. Robot Model
3. Largest feedback linearizable subsystem
4. Stabilization problem
5. Simulation Results
Simulation Results

Existing robot being investigated in simulations

3-link robot
- driven by Maxon 200W EC-Powermax 30 brushless motors
- planetary gearhead of $N = 53$
- maximum torque of approximately 6 Nm

Table 2: Robot parameters

<table>
<thead>
<tr>
<th>m_i – Mass [kg]</th>
<th>Centre of mass [m]</th>
<th>L_i – Length [m]</th>
<th>Inertia [kg m2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.118</td>
<td>0.062</td>
<td>0.07</td>
<td>0.0118</td>
</tr>
<tr>
<td>1.593</td>
<td>0.074</td>
<td>0.15</td>
<td>0.0119</td>
</tr>
<tr>
<td>0.405</td>
<td>0.134</td>
<td>0.295</td>
<td>0.0117</td>
</tr>
</tbody>
</table>

Figure 4: 3-link pendulum – experimental test-bed
Simulation Results

Simulation conditions

- the desired stabilization pose is the upright position for which the angles q_1^d, q_2^d and q_3^d were equal 90°, 0 and 0, respectively.
- initial condition: $q_{10} = 20^\circ$, $q_{20} = -60^\circ$ and $q_{30} = 131^\circ$ (exemplary one)
- the torque magnitude is restricted to 6 Nm – taken from existing robot
- simulation time $t = 10$ s.

The obtained angular trajectories are shown in Fig. 5a, while the control signal produced by motor is depicted on Fig. 5b.

![Figure 5: a) Angular position of links, b) Motor torque c) Animation.](image)
Thank You
For Your Attention